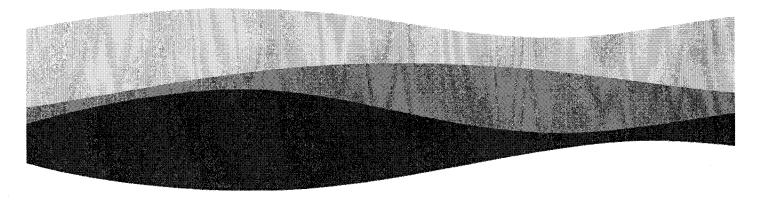


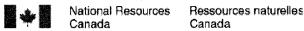
National Resources Canada


Ressources naturelles Canada

The Effect of Diesel Oxidation Catalysts on NO₂ Emission from Mining Vehicles

Joe Stachulak, MIRARCO, Mahe Gangal, NRCan/CanmetMINING & Cheryl Allen, Vale

20th MDEC Conference, Toronto October 7-9, 2014



AB86-COMM-15-6

Background

- Vale employs about 800 diesel-powered units with diesel oxidation catalysts in Sudbury mines
- In the past, DOCs were used in mines mainly to reduce CO and hydrocarbons, the main pollutants of concern at that time.
- Now, the pollutants of most concern are DPM and NO₂.
- From an occupational exposure point of view NO2 (TLV 3 ppm) is more toxic than NO (TLV 25 ppm).
- In 2012 ACGIH reduced the TWA value of NO₂ from 3 ppm to 0.2 ppm, a reduction of over 90%.
- Many occupational exposure limits are derived from ACGIH TLVs.
- The recent studies indicate that most of the old DOCs increase NO₂.

Canada

Objectives

• Objectives From Laboratory Studies:

- Determine the effect of DOCs on NO₂ emissions
- Analyze representative DOCs selected from Vale mines
- Test DOCs using progressive load cycle
- Quantify any change in NO₂ emissions due to the DOC

Note: Ultra-low-sulphur fuel (<15 ppm sulphur) was used for all testing

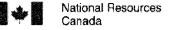
Selection of DOCs & Laboratory Test Details

4 Vale DOCs were selected based on:

- Engine type
- Equipment type
- · DOCs type and model
- · Duration in mine service

· Laboratory test details:

- All DOCs were tested on a DDEC 6063-WK32, series 60 engine, rated at 242 kW @ 2100 rpm
- Mine diesel fuel conforming to CGSB 3.16 standard was used, ultra-low sulphur fuel (15 ppm)
- Basic engine parameters (speed, torque, fuel rate etc.) and exhaust gas concentrations (CO, CO2, NO, NOx, THC) were measured before and after the DOC


National Resources Ressources naturelles

Progressive Load Test Cycle

- Is suitable to generate a performance curve for the DOC over its operating range
- Is useful in determining DOC conversion efficiency for exhaust emissions at a given temperature
- Was performed at intermediate engine speed of 1260 rpm, varying load from 10% to 100% at interval of 10% each
- Measured gaseous emissions at 10 modes, before and after the DOC

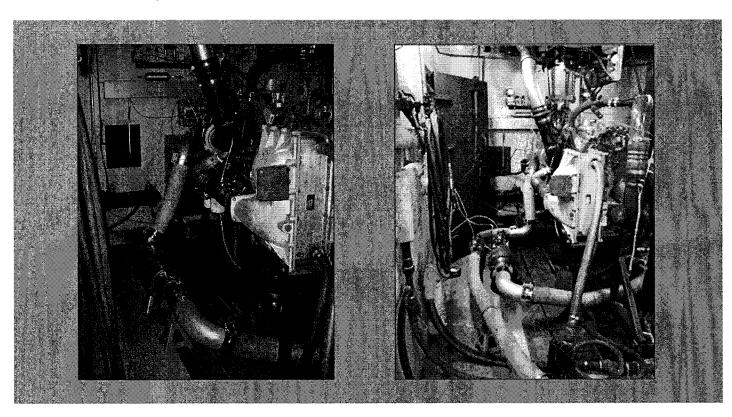
Details of DOCs for Testing

Lab ID	Equipment	Engine, kW	Hours in Service
DOC 4	Boom truck	151	730
DOC 5	Scissor truck	112	2700
DOC 6	Jeep	100	3400
DOC7	LHD	100	254

National Resources Ressources naturelles Canada

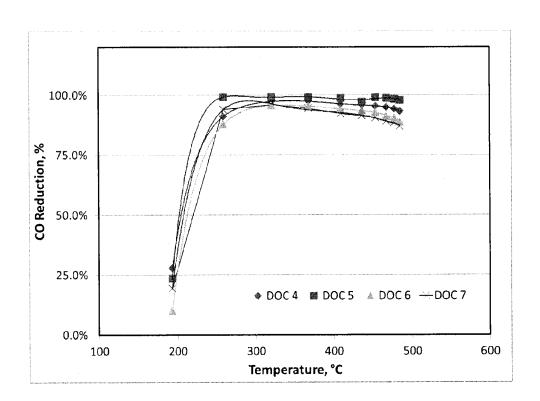
Test Engine

Make	Detroit Diesel	
Model	6063-WK32, Series 60	
Rated power, kW	242	
Displacement, L	11.1	
Rated speed, rpm	2100	
Intermediate speed, rpm	1260	
Peak torque speed, rpm	1200	
Peak torque, Nm	1539	
Fuel rate, kg/h	53.4	
Fuel system	Electronic fuel injection	



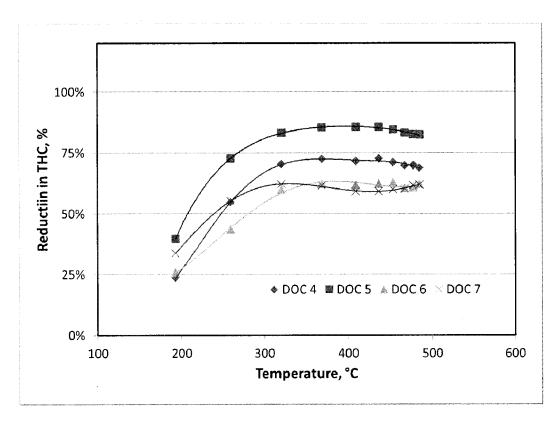
National Resources Canada

DOC Test System in Test Cell



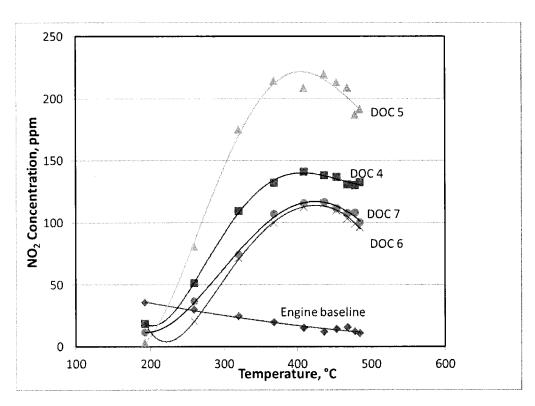
National Resources Canada

Percent Reduction in CO VS exhaust temperature



National Resources Canada

Percent Reduction in HC VS Exhaust Temperature



National Resources Canada

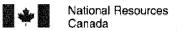
${\rm NO_2}$ emission before and after the DOCs

National Resources Canada

DOC-Out NO₂ Values

DOC	NO ₂ decreases below °C	Maximum NO ₂ ppm	Maximum NO ₂ at °C
DOC 4	235	141	409
DOC 5	225	225	410
DOC 6	265	115	415
DOC 7	250	116	416
Average	244	149	412

Engine-Out $NO_2 = 13$ ppm at 412 °C


National Resources Canada

Concluding Remarks

- The impact of in-mine use of DOCs with regard to exhaust emissions were evaluated in the laboratory using a controlled engine dynamometer.
- The testing utilized progressive load test cycle.
- All DOCs reduced CO and HC emissions.
- At low temperatures all DOCs decreased NO₂, and then after reaching a certain temperature (~ 244 °C) started increasing NO₂.
- The maximum DOC-out NO₂ value varied from 115 ppm (DOC 6) to 225 ppm (DOC 5), compared to an engine-out value of 13 ppm.
- The maximum NO₂ increase was observed at a temperature of 412℃, where NO₂ significantly increased (up to 17 times) from its baseline value of 13 ppm.
- More extensive DOC evaluation is planned with additional units from other underground mines to confirm emission trends witnessed from the Vale DOCs.

Acknowledgements

- Vale Ontario Operation for funding this project
- Al Laurich, Vale for selection and removal of DOCs for testing
- David Young, Brent Rubeli, Eric Leung, and Vince Feres, NRCan/CanmetMINING for laboratory testing of DOCs

Canada

National Resources Ressources naturelles Canada

Questions?

National Resources Canada