[PROJECT TITLE]

[PROJECT DESCRIPTION]

[MULTIPLE SEAM PARAMETERS]
Interburden Thickness..............100 (ft)
Previous Mining..................Gob Solid Layout
Vertical Position..................Active UNDER Previous
Active Seam Mining Mode...........Analysis of Longwall Pillar Stability

[PREVIOUS SEAM PARAMETERS]
Seam Thickness..........................6 (ft)
Width of Gob............................620 (ft)
Age of Workings.......................10 years

[ACTIVE SEAM PARAMETERS]
CMR..................................45

[ALPS DATA]
Entry Height...............................5 (ft)
Depth of Cover.............................590 (ft)
Panel Width................................1000 (ft)
Entry Width..............................20 (ft)
Number of Entries......................3
Crosscut Spacing.......................100 (ft)
Center to Center Distance $1........100 (ft)
Center to Center Distance $2........100 (ft)

[ALPS DEFAULT PARAMETERS]
In Situ Coal Strength...................900 (psi)
Abutment Angle..........................21 (deg)
Unit Weight of Overburden.............162 (pcf)

[AMSS Output]

[MULTIPLE SEAM PILLAR STABILITY FACTORS]
Development Stability Factor............2.48
TAILGATE Loading......................1.12

Tailgate pillar SF is less than the suggested value of 1.13
The pillar design may be inadequate to prevent a major multiple seam interaction. Consider incre

[PREDICTED CONDITIONS]
Development: GREEN: A major interaction is unlikely.

Tailgate: YELLOW: A major interaction should be considered likely unless a pattern of supplemental roof support (cable bolts or equivalent) is installed. Rib instability is also likely.

In addition to installing a pattern of roof support, the likelihood of a major interaction may be reduced by increasing the pillar size by changing the entry spacing, the crosscut spacing, and/or the pillar width.

[WARNING MESSAGES]

[CALCULATED STRESSES]
Single seam development stress..........1740 (psi)
Multiple seam stress 586 (psi)
Total vertical stress (Development) 2327 (psi)
Tailgate abutment stress 2102 (psi)
Total vertical stress (Tailgate Loading) 4429 (psi)

[SUGGESTED CRITICAL INTERBURDEN AND STRESS]
Critical Interburden for Development 96 (ft)
Allowable Total Vertical Stress 2457 (psi)
If a pattern of supplemental roof support is installed, then:
Critical Interburden for Development 30 (ft)
Allowable Total Vertical Stress 5822 (psi)

Critical Interburden for Tailgate Loading 170 (ft)
Allowable Total Vertical Stress 2457 (psi)
If a pattern of supplemental roof support is installed, then:
Critical Interburden for Tailgate Loading 83 (ft)
Allowable Total Vertical Stress 4947 (psi)

[ALPS STABILITY FACTORS - STANDARD GEOMETRY]

<table>
<thead>
<tr>
<th>Classic ALPS</th>
<th>ALPS (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Loading</td>
<td>3.31</td>
</tr>
<tr>
<td>Headgate Loading</td>
<td>2.27</td>
</tr>
<tr>
<td>Bleeder Loading</td>
<td>1.72</td>
</tr>
<tr>
<td>** Tailgate Loading</td>
<td>1.27</td>
</tr>
<tr>
<td>Isolated Loading</td>
<td>1.14</td>
</tr>
</tbody>
</table>

[ALPS STABILITY FACTORS - STANDARD GEOMETRY - MULTI SEAM CONDITIONS]

<table>
<thead>
<tr>
<th>Classic ALPS MS</th>
<th>ALPS (R) MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Loading</td>
<td>2.48</td>
</tr>
<tr>
<td>Headgate Loading</td>
<td>1.84</td>
</tr>
<tr>
<td>Bleeder Loading</td>
<td>1.47</td>
</tr>
<tr>
<td>** Tailgate Loading</td>
<td>1.12</td>
</tr>
<tr>
<td>Isolated Loading</td>
<td>1.02</td>
</tr>
</tbody>
</table>

[ALPS PILLAR LOAD BEARING CAPACITY]

PILLAR #1
for Pillar Width (ft) 80.0
and Pillar Length (ft) 80.0
Width/Height Ratio 16.00
Unit Pillar Strength (psi) 5760
Pillar Load Bearing Capacity (lbs) / (ft) of gate entry 5.31E+07

Unit Pillar Strength (R) (psi) 5760
Pillar Load Bearing Capacity (R) (lbs) / (ft) of gate entry ... 5.31E+07

PILLAR #2
for Pillar Width (ft) 80.0
and Pillar Length (ft) 80.0
Width/Height Ratio 16.00
Unit Pillar Strength (psi) 5760
Pillar Load Bearing Capacity (lbs) / (ft) of gate entry 5.31E+07

Unit Pillar Strength (R) (psi) 5760
Pillar Load Bearing Capacity (R) (lbs) / (ft) of gate entry ... 5.31E+07

TOTAL PILLAR SYSTEM LOAD BEARING CAPACITY [ALPS Classic]
Total Load (lbs) / (ft) of gate entry 1.06E+08
TOTAL PILLAR SYSTEM LOAD BEARING CAPACITY [ALPS (R)]

Total Load (lbs) / (ft) of gate entry: \(1.06 \times 10^8\)

To view the distribution of Unit Pillar Loading
select 'View Plots->Settings->Unit Pillar Loading'
To view the distribution of Load Bearing Capacity
select 'View Plots->Settings->Load Bearing Capacity'

<table>
<thead>
<tr>
<th>Development Loading</th>
<th>32,076,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headgate Loading</td>
<td>46,829,970</td>
</tr>
<tr>
<td>Bleeder Loading</td>
<td>61,583,930</td>
</tr>
<tr>
<td>Tailgate Loading</td>
<td>83,882,200</td>
</tr>
<tr>
<td>Isolated Loading</td>
<td>93,024,470</td>
</tr>
</tbody>
</table>

| **[ALPS MULTIPLE SEAM LOADS ON PILLAR SYSTEM]** (lbs) / (ft) of gate entry |
MS Development Load	37,480,950
MS Headgates Load	50,883,680
MS Bleeder Load	64,286,410
MS Tailgate Load	84,692,940
MS Isolated Load	93,024,470