Controlling Exposure to Diesel Emissions in Underground Mines

Aleksandar D. Bugarski, Samuel J. Janisko, Emanuele G. Cauda, James D. Noll, and Steven E. Mischler
Contents

Preface .. v
Acknowledgments .. vii
1 Purpose of this Document .. 1
2 Scope of this Document ... 1
3 Introduction .. 2
 3.1 Diesel engines in underground mines 2
 3.2 Exposure to aerosols and gases from diesel engines 3
 3.3 Current regulations affecting diesel-powered equipment .. 4
4 Exposure to Diesel Pollutants 16
 4.1 Exposure to CO, CO₂, NO, and NO₂ 16
 4.2 Exposure to diesel aerosols and diesel particulate matter 19
5 Integrated, Multifaceted Approach Toward Controlling Exposure to
 Particulate Matter and Gases from Diesel Engines 58
 5.1 Concept of an integrated, multifaceted approach 58
 5.2 Selection process for appropriate control strategies 61
6 Curtailment of Diesel Emissions 63
 6.1 Control of engine-out emissions 63
 6.2 Exhaust aftertreatment technologies 92
 6.3 Diesel fuels, additives, and lubrication oil 201
 6.4 Advanced maintenance 257
 6.5 Alternative sources of power for underground mining vehicles 277
7 Control of Airborne Pollutants 280
 7.1 Introduction ... 280
 7.2 Dilution of diesel pollutants using fresh air ventilation 280
 7.3 Controlling DPM exposures with environmental cabs 306
 7.4 Controlling exposures with respirators 318
8 Administrative Controls for Reducing Exposure 326
 8.1 Introduction ... 326
 8.2 Examples of administrative controls 326
9 Measurement, Characterization, and Monitoring of Diesel Emissions
 and Gases ... 331
 9.1 Introduction ... 331
Preface

The use of diesel-powered equipment to support processes in the underground mining industry is as popular today as it has ever been. Although using this type of equipment provides many benefits, such as flexibility during development and exploitation phases, it also presents several challenges with respect to managing the safety and health of workers as well as protection of the environment. Where used, diesel equipment is by far the most significant source of a mine worker's exposure to submicrometer aerosols and noxious gases. The implementation of diesel equipment also affects various aspects of a mine's design and operation. To maximize the benefits of this diesel technology and minimize adverse effects, the details of its impact must be well understood by professionals, regulators, and researchers alike.

This document was generated from collective knowledge amassed by researchers at the National Institute for Occupational Safety and Health (NIOSH), Office of Mine Safety and Health Research (OMSHR), who have been conducting diesel-related research for many years. Prior to the production of this text, the authors had found that the information necessary for combating this complex issue in underground mining had been fragmented throughout the literature. The goal of this document was therefore to reconcile this information and make it readily available in one comprehensive reference.

This document introduces the elements necessary for developing comprehensive, mine-specific programs for reducing the exposure of underground miners to aerosols and gases emitted by diesel engines. The authors hope that this publication can be used as both a practitioner's guide and a teaching aide in this exciting and rapidly evolving area of mine health and safety.

The authors could not have completed this project without the assistance from experts in industry, labor, academia, and government. We thank these individuals for their tireless efforts on this project.