Dust Control on Continuous Mining Machines

Joy Mining Machinery
Topics

• Flooded Bed Dust Collector
• Machine Sprays
• Wethead Cutterhead
Flooded Bed Dust Collector

- FAN
- SUMP
- DEMISTER
- ATTENUATOR
- SCREEN
- AIR FLOW TEST POINTS

Mining New Opportunities
Flooded Bed Dust Collector

SIDE VIEW

SPRAY BAR SCREEN DEMISTER BACKFLUSH SPRAY SUMP DRAIN FAN

TOP VIEW
Machine Configuration

- **Intake**
 - Chassis Duct Only
 - Dual Intake Chassis Duct
 - Boom Ductwork

- **Exhaust**
 - Standard
 - Cross Under Duct

- **Dual Scrubber**
Chassis Duct Only
Dual Intake Chassis Duct
Boom Ductwork w/ Cross Under Duct
Dual Scrubber
Duct Sprays

- **Standard Configuration**
 - (1) 70 degree hollow cone spray
 - 6.5 gpm @ 45 psi
 - Sprays screen parallel to air flow

- **Other configurations**
 - additional sprays
 - alternate spray flows
 - alternate spray angles
 - backflush sprays on screen
Screens

• Screen slows velocity of dust allowing the spray water and dust to mix
• Screens only “filter” large particles
• Screen set at angle to increase turbulence and increase overall screen surface area
• Woven steel mesh (.0035” wire)
• Pleated
• Layers (folded “sock” of mesh)
 - 10 layer (course)
 - 20 layer (standard)
 - 30 layer (fine)
• Polyurethane bound
Demister Box

- Removes water/dust mixture from air
- 90% efficient in removing respirable dust pulled into scrubber
- Dual, in-line demisters are an option
Slurry Removal

• Slurry collects under demister in sump area
• Removed via:
 - Centrifugal pump or
 - Venturi
• Slurry can be deposited in various locations
 - Conveyor throat (drop tube)
 - Conveyor
 - Gathering pan
 - Drums
• Axial Vane

• Horsepower / Flow (available)
 - 13 hp - 4000/3500 cfm (oper/min)
 - 13 hp (hi) - 4500/4000 cfm
 - 30 hp (low) - 6000/5400 cfm
 - 30 hp - 7000/6000 cfm
 - 30 hp (hi) - 8000/6500 cfm
 - 40 hp - 10,000/9000 cfm
Intake
Chassis Duct
Demister and Fan
Exhaust

Mining New Opportunities
Maintenance

- **2 X per shift**
 - Tap out contaminants on screen
 - Flush screen
- **Daily**
 - Flush inlets and ductwork w/ screen in place and screen cover open
- **Weekly**
 - Backflush slurry pump
 - Open sump drains
 - Flush demister
 - Flush sump
 - Dry screen and tap out contaminants
Troubleshooting

- Actual and Minimum cfm values listed on demister door
- If cfm drops below min value,
 - check fan blade tip / housing clearance is <.100” (.020” new)
 - if not, change fan
 - change screen mesh
 - clean scrubber
Testing Flow

- Flow tested on OEM and rebuild machines via Pitot tube method
- At test points in scrubber duct, the air velocity is recorded at every inch in height.
- The values are averaged and multiplied by the duct cross sectional area to determine volumetric flow
- The actual volumetric flow is recorded on the demister cover nameplate
Drawbacks to a FBDC

• Noise
 - Scubber attenuator
 - Sound dampening foam in duct
 - Fan wrapped in sound dampening insulation

• Maintenance

• Size
 - Determine height of machine
 - Take up a lot of useful space on machines
Machine Dust Sprays

- 70 degree hollow cone sprays (typ)
- 100 psi (typ)
- Spray bars can be located on
 - Top of boom (middle, right, and left) spraying on drums
 - Bottom of boom (middle, right, and left) spraying on drums
 - Side of boom spraying on end of drum
 - Conveyor throat spraying on conveyor
 - Gathering pan spraying above loading arms
 - Chassis spraying toward face/rib
 - Any other customer supplied location
- Typical boom spray arrangement designed to keep dust toward the face and allow dust to be collected by the scrubber
- Directional sprays on boom can be fitted to direct air flow across the face
- Venturi sprays (air moving) can be used in high methane areas to provide a concentration of air to particular location
Typical Boom Spray Arrangement
Typical Machine Spray Arrangement

- **L.H. CUTTER MOTOR SIDE COVER**
 - 3 SPRAYS SPRAYING DOWN PLUGGED

- **L.H. CHASSIS SPRAY**
 - 2 NOZZLES ON VERTICAL

- **DUCTWORK SPRAY**
 - 01566237-0040 NOZZLE

- **DUCTWORK CLEANING SPRAY**
 - 01566237-0006

- **R.H. CHASSIS SPRAY**
 - 2 NOZZLES ON VERTICAL

- **R.H. CUTTER MOTOR SIDE COVER**
 - 3 SPRAYS SPRAYING DOWN PLUGGED

- **L.H. END RING SPRAY**
 - 3 NOZZLES ON VERTICAL

- **L.H. CUTTER DRUM SPRAY**
 - (TOP & BOTTOM)

- **CENTER CUTTER DRUM SPRAY**
 - (TOP)

- **R.H. CUTTER DRUM SPRAY**
 - (TOP & BOTTOM)

- **R.H. END RING SPRAY**
 - 3 NOZZLES ON VERTICAL
The Joy WetHead Cutterhead

44” Cutter Diameter
Benefits: The Potential to Reduce...

- Dust levels
- Face ignition frequency
- Bit consumption
- Power consumption
- Machine wear
- Scrubber maintenance
- Machine Noise
- Water Consumption
- Lost Production Time
WetHead Features

- **Cutterhead Gearcase**
 - Same gearing and bearings of standard gearcase
 - Water porting sized for max flow / min pressure drop

- **Cutter Drums**
 - Thicker than standard drum shell
 - Internal water porting

- **Bit Blocks**
 - Integral water spray on each block
 - Design guided by Bretby established ITPP criteria
 - *Incendive Temperature Potential Protection*
WetHead Features

• Water Seal - “The Heart of the WetHead”
 - Single water seal design
 - Dual carbon-on-CrO seal faces
 - Anticipated life – 4000 hours!
 - Designed to relieve to atmosphere if seal faces were to fail – No water in oil!

• Water Circuit
 - Independent water circuit
 - 25 micron non-bypass filtration
 - Independent pressure regulation
Bit Block Spray Nozzle
Dust Study Results
(WetHead vs Standard)

- Independent third party dust evaluations by:
 - CSIR Miningtek
 - SIU (Southern Illinois University)
 - MSHA (Mining Safety and Health Administration)
 - NIOSH (National Institute for Occupational Safety and Health)
 - 2 independent studies at 2 different locations

- Improvements in dust levels - based on average respirable dust concentrations
 - 35% lower vs. non-wethead in the Return (SIU)
 - 50% lower at the CM operator (CSIR Miningtek)
 - 42% lower at the SC operator (NIOSH)

- Quartz / Silica levels (1 study - NIOSH)
 - 11% lower in the Return
 - 9% lower at the CM operator
 - 66% lower at the SC operator
Projected WetHead Population, 2004-2008

<table>
<thead>
<tr>
<th>Year</th>
<th>Series 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>3</td>
</tr>
<tr>
<td>2006</td>
<td>10</td>
</tr>
<tr>
<td>2007</td>
<td>36</td>
</tr>
<tr>
<td>2008</td>
<td>72</td>
</tr>
</tbody>
</table>
Questions / Comments