Continuous Miner and Roof Bolter Dust Control

Jeff Listak
NIOSH
Pittsburgh

The findings and conclusions in this presentation have not been formally disseminated by NIOSH and should not be construed to represent any agency determination or policy.
MSHA Valid Inspector Samples
2003 to 2007

• 7.4% CM Operators samples (13,236) exceeded the 2 mg/m3 dust standard

• 19.5% CM Operator samples (4869) exceeded the reduced silica dust standard

• 3.5% Roof Bolter samples (15,796) exceeded the 2 mg/m3 dust standard

• 10% Roof Bolter samples (6,612) exceeded the reduced silica dust standard
Objective

To describe and illustrate proven methods and engineering controls to minimize respirable dust concentrations on continuous mining operations (CM and bolter operators)
Outline

1. Continuous Miner Dust Control
 - Water Sprays
 - Scrubbers
 - Air (Ventilation)
 - Wet Head Cutter

2. Roof Bolter Dust Control
 - Dust Box Maintenance
 - Cleaning
 - Dust Collector Bags
 - Canopy Air Curtain
 - Pre-cleaner Dust/Exhaust Conditioner (Water Box)
Limiting Dust Exposure

• **Water (sprays)**
 – Suppresses
 – Redirects
 – Captures (sprays and scrubbers)

• **Air (ventilation)**
 – Dilutes
 – Transports
Impact of Water on Dust

- Suppression – prevent generation
- Capture – remove from air (water or mechanical means)
- Redirection – directed away from worker
Function:
- Suppress/wet
- Capture
- Redirect

Application:
- High flow/low pressure
- Droplet size/velocity
- High pressure/location
Spray Types

- Full Cone
- Flat Spray
- Hollow Cone
- Solid Stream
- Water Atomizing Spray
Spray Nozzles

Hollow Cone

- Conical shape, outer ring of circular spray
- Most widely used
- Small to medium droplets of water
- Larger orifice/less likely to clog
- Effective for dust mixing (knockdown) and redirecting
- Usually provided from manufacturer
Spray Nozzles
Full Cone

- Conical shape with solid circular pattern
- Medium to large droplets of water
- Provide uniform wetting
- Wide range of pressure and flows
- Effective for scrubber filters and belt transfer points
Spray Nozzles
Flat Fan

- Produce narrow ‘wall’ of spray at various angles
- Wide range of flow and spray angles
- Horizontal, high flow and low pressure as boom sprays suppress dust
- Vertically mounted on either side of miner directed toward face contains dust for scrubber capture
Spray Nozzles
Solid Stream

• Straight solid stream of water at high volume
• To be used close to the source
• Provide uniformity of wetting
• Effective for dust suppression bit cooling
Wetting/Suppression

- Flat-fan/Hollow cone sprays on top of boom
- Deluge sprays under boom (flat or hollow cone)
- Throat sprays
- Surfactants (wetting agents)

- Flow rate most important
Sprays close to cutting head
Spray Locations

A. Top sprays flat fan nozzles turned horizontally

B. Side sprays flat fan nozzles turned vertically

C. Bottom sprays
 - 2.5 ft
 - 30°
 - Bottom sprays (underside of boom)
Spray Capture Effectiveness on Airborne Dust

- Smaller Droplet Sizes
- High Velocity Droplets
Airborne Dust Capture

![Graph showing the relationship between water flow (gpm) and dust knockdown (%) for different materials. The graph includes data points for BD3-3, BD8-1, GG-3, and GG-3009.]
Redirecting/Moving Air

- Shovel sprays (hollow cone)
- Spray-fan system (hollow cone)
 - methane control
 - reduced effectiveness on dust control
- Blocking Sprays (flat)
- Pressure/location important
Air Moving Effectiveness

![Bar graph showing the effectiveness of different spray types at different psi levels. The graph compares cfm induced/gpm for BD3-3, BD8-1, GG-3, GG-3009, VV-1510, and VV-2510 at 75 psi and 150 psi.]
Shovel Sprays
(without scrubber)
Spray Fan System

- Exhausting Ventilation
- Primarily for Methane Control
- Reduced Dust Control Effectiveness
Blocking Sprays

• Primarily used with scrubbers
• Contains dust beneath boom
• Lower dust levels at operator and around machine
Spray Water Filtration

Reduces Plugging
Spray Nozzle Flow Comparisons
Hahn vs Spraying Systems Nozzles

• Hahn 3-3 equivalent to BD-3

• Hahn 3-5, 24% less than BD-5
Flooded-bed Scrubbers
Capture and Remove Airborne Dust
Scrubber Filter Study

Filters Tested

30-layer 20-layer 10-layer Bottle brush 15-layer Bondina
10 vs 30 Layer Filters
Respirable Quartz Collection Efficiencies

Filter type:
- 20-L
- 15-L
- Brush
- 10-L
- Synthetic
- 30-L

Collection efficiency (%):
- 50
- 60
- 70
- 80
- 90
- 100
Air Quantity Measured With Each Filter Panel

<table>
<thead>
<tr>
<th>Filter type</th>
<th>Airflow (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-L</td>
<td>8000</td>
</tr>
<tr>
<td>15-L</td>
<td>7800</td>
</tr>
<tr>
<td>Brush</td>
<td>7500</td>
</tr>
<tr>
<td>10-L</td>
<td>8500</td>
</tr>
<tr>
<td>Synthetic</td>
<td>6500</td>
</tr>
<tr>
<td>30-L</td>
<td>6300</td>
</tr>
</tbody>
</table>
Scrubber Efficiency

- Scrubbers can lose 1/3 of airflow after one cut
- Check air velocity with pitot tube
- Most common loss of efficiency due to filter panel clogging.
Clean and Maintain Scrubber Filter and Demister

- Filter spray(s) should completely wet the panel (full cone sprays)
- Clean filter panel and ductwork with water twice each shift
- Replace filter each shift, back flush and allow to dry, then shake out remaining dust
Clean the Demister and Sump Weekly at a Minimum
Air Blowing Ventilation

Correct location
Blowing Ventilation

• Advantages
 • Greater penetration to face > 800 fpm
 • Effectively sweeps dust and methane from the face
 • Easier to maintain than exhaust

• Disadvantages
 • Restricts operator movement
 • Shuttle car operators must work in return air
 • Incorrect air balance may cause recirculation or overpowering
Blowing Ventilation

Recommendations

• Airflow at end of curtain should match or be no more than 1000 cfm > scrubber airflow
• Measure airflow into place with scrubber off
• Shuttle car operator is on curtain side of entry
• Scrubber discharge is on off curtain side
Air
Exhausting Ventilation

Off-Curtain side miner position

Curtain side miner position

Scrubber exhaust

Remote operator location

Intake air
Exhausting Ventilation

Advantages
- Operator has greater range of movement
- Shuttle car operator remains in fresh air
- Minimal effects on scrubber inlet efficiency

Disadvantages
- Curtain is difficult to maintain
- Less effective sweep of dust and methane from the face than blowing
Exhausting Ventilation
Recommendations

• Operator/helpers remain on intake side of entry
• Line curtain secured firmly to roof and floor
• Mean entry air velocity – 60 fpm minimum
• Curtain setback beyond scrubber discharge
• Shuttle car operator located on off curtain side of entry
• Exhaust curtain airflow should exceed scrubber airflow.
Spray system optimization
Continuous Miner Gallery Testing
Exhaust Ventilation with Flooded-Bed Scrubber

Test Factors:
- Spray pressure (80psi – 160 psi)
- Blocking Sprays (Off – On)
- Scrubber Flow (Max. – Reduced 20%)
Spray system optimization
Results – Optimal Dust & Gas Results

• Position – Off curtain location

• Spray Type – Hollow Cone

• Spray Pressure – 80 psi

• Blocking Sprays – Yes

• Scrubber airflow – Maximum
Continuous Miner Dust Control

Wethead Cutter Drum

Locates water sprays directly behind each bit on the cutter head at point of attack

- 62 to 73 sprays on head
- 25-30 gpm at 100psi
- Solid or hollow cone sprays

Courtesy of Joy Mining Machinery
Wethead vs Standard Sprays
Background

• Bureau of Mines
• South Africa
• MSHA
• SIU
• NIOSH
Wethead Benefits

- Bit cooling - reduce frictional ignitions
- Increase bit life
- No increase in water consumption
- Potential to reduce respirable dust
Research Methods

- Five mine study compares wethead CM to standard spray CM
- Kentucky, Illinois, Virginia, West Virginia
Sampling Methods
Data Analysis

• Normalized for production
• Compare operator exposure
• Compare return concentrations
• Return quartz concentrations
Section Parameters

<table>
<thead>
<tr>
<th></th>
<th>Mine A</th>
<th>Mine B</th>
<th>Mine C</th>
<th>Mine D</th>
<th>Mine E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation</td>
<td>Blowing</td>
<td>Exhausting</td>
<td>Blowing</td>
<td>Blowing</td>
<td>Exhausting</td>
</tr>
<tr>
<td>Section</td>
<td>Super sect.</td>
<td>Single</td>
<td>Super sect.</td>
<td>Single</td>
<td>Single</td>
</tr>
<tr>
<td>Scrubber</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
All Mines - CM Operator

Continuous Miner Operator Dust Levels

Concentration, mg/m3

Mine

A B C D E

Stnd
WH
All Mines - Return

Return Dust Levels

Concentration, mg/m^3

Mine

A B C D E

<table>
<thead>
<tr>
<th>Mine</th>
<th>Stnd</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>
Summary

- Dust reduction in return with exhausting ventilation without scrubber
- Moderate to small reductions at the CM operator
- Quartz dust reduction variable
- Increased visibility
- Operator acceptance
Other Considerations

- Bit Design
- Cutting Roof Rock
Bit Designs

- Slender profile
- Small carbide
- High wear rate, resulting in high dust levels

- Intermediate profile
- Large carbide
- Low wear rate
- Low dust levels

- Fat profile
- Irregular transition
- Shank rubs, resulting in high dust levels
Improved Cutting Methods
Roof Bolter Dust Control
Operator Over Exposures

- Poor maintenance of vacuum dust collector
- Improper cleaning of collector compartment
- Removing and replacing canister filter
- Contamination of the downstream collector components
Roof Bolter Dust Collector

COLLECTION SIDE
- Drill Bit
- Drill Steel
- Drill Base
- Collector Hose
- Pre-Cleaner
- Canister Filter

DISCHARGE SIDE
- Vacuum Pump
- Muffler

Main Chamber
Maintenance

- Eliminate leaks in vacuum system
- Check door gasket integrity
- Hoses and clamps
- Door latches intact
- Door not bent, seating tight
Improper Cleaning of Dust Box

- Insufficient air
- Downwind of ventilation
- Too close to source
- Clothes contamination
Cleaning the Filter?
Discharge Contamination
Dust Collector Components

COLLECTION SIDE
- Drill Bit
- Drill Steel
- Drill Base
- Collector Hose
- Pre-Cleaner
- Canister Filter

DISCHARGE SIDE
- Vacuum Pump
- Muffler

Cyclone
Main Chamber
Dust Collector Box
Reusable Brattice Bag Controls Dust During Box Cleaning

- Bag fills with dust during bolting
- Dump bag against rib
- Controls silica exposure
Silica Dust Levels When Cleaning Dust Box

Silica dust levels, ug/m³

Ave. Tray = 712 ug/m³

Ave. Bag = 302 ug/m³
Disposeable Collector Bag

- Manufactured by Wildwood Industries
- Distributed by JH Fletcher for bolters
- Can be retrofitted to most Fletcher dust collectors
- Recommended to be used with pre-cleaner
Bolter Bag Lab Study

- Simulated roof bolter drilling dust collector
- 60 tests (30 with bag installed and 30 without bag)
- 50 lbs of ground limestone per minute for each test
- Sampling: RAM1, APS, Canister filter loading, Pressure drop across filter
Collector Box Tests

Before

After
Collector Box Tests With Bag

Before

After
Filter Weight Gain per Test

Filter Weight Gain, Bag vs. Bagless

- Test number
- Weight, g

Bag
Bagless

Graph showing the comparison of filter weight gain between Bag and Bagless methods.
Total Filter Loading

Total weight on filter, Bag vs Bagless

Weight, g

Bag
Bagless

0
50
100
150
200
250
300
350
400
450

Bag

Bagless
Pressure Drop Across Filter

Key:
- Black Diamond: Bag
- Red Square: Bagless

PRESSURE, in wg

TEST NUMBER
Lab Results Summary

- Avg of 99.6% of feed dust contained in collector bag
- Dust concentration in exhaust: 2 times higher when bag not installed
- Total dust particle count of fine dust (< 2 microns) 3 times greater without bag in place
- Canister filter loading greatly reduced with bag in place
- Pressure drop across filter: 3.0 to 3.3 with bag in place, 4.0 to 8.4 without bag
Bolter Bag Field Study

- Dual boom Fletcher bolter
- Upwind of miner
- Exhausting ventilation
- Bag vs bagless
- Area samplers – gravimetric and pDR’s
- Personal samplers - PDM
Instrument Locations

Bolter

Line brattice

Check curtain

NIOSH personel wearing PDM’s

Instrument locations

Return

Intake
Gravimetric Sample Results
Collector Emissions

<table>
<thead>
<tr>
<th>Bag</th>
<th>Bagless</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Dust Concentration, mg/m3
Field Results

• Gravimetric samplers: respirable dust improved from 0.96 mg/m3 to 0.14 mg/m3 when the bag is in use.

• Personal samples from the PDMs: left side (exhaust side) of the bolter experienced over 2 times the amount of respirable dust than the right side.

• Collector box cleaning time reduced from 4 minutes to 30 seconds.
Overall Benefits of Collector Bags

• Keeps dust contained during removal from box
• Keeps dust out of entry traffic preventing further entrainment
• Prolongs filter usage – reduces R/R frequency
• Reduces dust on outby collector components
• Reduces dust emissions from collector exhaust
Canopy Air Curtain

Limits exposures downwind of continuous miner
Air Curtain Development

Original prototype Current design
Tubing to air curtain

Tubing to filter
Nylon tie-downs

Tubing from fan
Operator Under Air Curtain
Canopy Air Curtain Test Methods

- Lab test of varying Canopy Air Curtain designs to provide maximum protection for bolter operators
 - Sample beneath CAC and 1 Ft upwind (60fpm)
- Field test Canopy Air Curtain to determine dust reduction during normal bolting operations
 - Sample both bolter operators, CAC on off curtain side canopy
 - Time study on CAC operator
Canopy Air Curtain
Results

• Lab study show 95% reduction under canopy at 60 fpm mean entry air velocity.
 – Sampling 100% of time under CAC

• Field study of 3 bolter places shows reductions of 53, 35, and 89%
 – CAC operator under canopy only about 50% of the sampling time
Ongoing Roof Bolter Studies

Exhaust conditioner (water box)

Pre-cleaner dust
Pre-cleaner Dust Evaluation

• Forty-six bulk samples of roof bolter collector dust were collected by NIOSH and MSHA inspectors from UG coal mines in Districts 4, 5, 6, and 7.

• Bulk dust samples were analyzed for quartz content and particle size distribution.

• Airborne respirable dust measurements were made in three sections of two mines by NIOSH to identify any respirable dust contribution from precleaner dust dump events.
Pre-cleaner dust assessment

Results

• 18% of the precleaner dust is respirable size (< 10 µm).
• 38% of the collector box dust is respirable size.
• Quartz content of precleaner dust is not significantly different from that of collector box dust (27.3% vs. 26.2%).
• Based on a preliminary study, precleaner dust dump events did not result in measurable increases of airborne respirable dust.
• Precleaner dump dust is a potential hazard due to the amount of respirable size and quartz content. Miners should be trained to avoid disturbing dust piles.
Water Exhaust Conditioner

Diagram showing the layout of a water exhaust conditioner, with labels for inlet, exhaust, internal muffler, water level plug, water level, and airflow. The diagram is not to scale.
Exhaust conditioner

Laboratory Test Methods

• Add water box to existing dust collector simulator in lab
• Test two dust types: limestone and coal
• Sample upstream and downstream of device
Exhaust conditioner Results

• Exhaust conditioner improves respirable dust collection efficiency by 41%
• Minimal potential for benefits/impact on operator exposure when dust collector box is properly maintained
• Not a substitute for poorly maintained collector box
Controlling Worker Exposure

• Minimize Quantity of Dust Generated
• Apply Controls Close to Source
• Utilize a Multitude of Controls
• Worker Involvement
• Maintenance is Critical
Questions?

Jeff Listak
412–386–5082
jlistak@cdc.gov