Controlling Dust on Continuous Mining Operations

John Organiscak
NIOSH
Pittsburgh
MSHA Dust Samples
2009 to 2012

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Coal Dust > 2 mg/m³</th>
<th>Coal Dust > 1.5 mg/m³</th>
<th>Quartz Dust > 100 µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM Operator</td>
<td>3.7%</td>
<td>8.8%</td>
<td>9.7%</td>
</tr>
<tr>
<td>Roof Bolter</td>
<td>1.1%</td>
<td>3.7%</td>
<td>10.6%</td>
</tr>
<tr>
<td>Shuttle Car</td>
<td>1.3%</td>
<td>3.7%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Objective

To describe and illustrate proven methods and engineering controls to minimize respirable dust concentrations on continuous mining operations.
Outline

Continuous Miner Dust Controls

- Water Sprays
- Wetting Agents
- Wethead Drum
- Scrubbers
- Face Airflow Practices (Ventilation)
- Spray and Scrubber Optimization for Exhaust Face Ventilation Systems
- Underground Studies of Continuous Miner Scrubber Effectiveness
- Mining Crosscuts
- Bit Design and Cutting Considerations
Outline (continued)

Roof Bolter Dust Controls

- Drill Dust Collection System
- Dust Collector Maintenance and Cleaning
- Dust Collector Bags and Pre-dump
- Collector Exhaust Water Box
- Canopy Air Curtain (Needs Refinement)
- Stand Alone Scrubber (Needs Field Testing)
Water Sprays on Continuous Miners

Function:
- Suppress/wet
- Capture
- Redirect

Application:
- High flow/low pressure
- Droplet size/velocity
- High pressure/location
Wetting/Suppression

- Sprays close to cutting head
- Surfactants (wetting agents)

✓ Flow rate most important
Spray Locations

A. Top sprays
 flat fan nozzles
 turned horizontally

B. Side sprays
 flat fan nozzles
 turned vertically

C. Bottom sprays
 (underside of boom)
 2.5 ft
 30°
Spray Capture Effectiveness on Airborne Dust

- Smaller Droplet Sizes
- High Velocity Droplets
- Pressure Most Important
Redirecting/Moving Air

Spray type

<table>
<thead>
<tr>
<th></th>
<th>75 psi</th>
<th>150 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD3-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD8-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG-3009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VV-1510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VV-2510</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressure/location important

✓
Spray Fan System
(without scrubber)

- Exhausting Ventilation
- Primarily for Methane Control
- Reduced Dust Control Effectiveness
Blocking Sprays
(with scrubbers)

• Contains dust beneath boom
• Lower dust levels at operator and around machine
Spray Water Filtration

Reduces Plugging
Wetting Agents

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Wetting Agent Testing</th>
<th>Result / Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>USBM/BCR</td>
<td>1980</td>
<td>Anionic, Cationic & Nonionic, 0.1 to 1.0 %</td>
<td>Different coal wettability 27% reduction at auger section</td>
</tr>
<tr>
<td>Penn State</td>
<td>1991</td>
<td>Anionic, Cationic & Nonionic, 1.0%</td>
<td>Lab study showed smaller droplet size had more impact</td>
</tr>
<tr>
<td>Penn State</td>
<td>1992</td>
<td>Anionic, Cationic & Nonionic, < 1.0%</td>
<td>Cationic more net + charge, slightly better than others</td>
</tr>
<tr>
<td>Penn State</td>
<td>1993</td>
<td>Cationic on Anthracite, hvA, & Subbituminous</td>
<td>No rank effect, but optimum agent concentration effect</td>
</tr>
<tr>
<td>Rolla</td>
<td>1993</td>
<td>Contact < & sink test screening on bituminous</td>
<td>Sink test a good prescreening tool for potential dust reduction</td>
</tr>
<tr>
<td>USBM</td>
<td>1996</td>
<td>0.02 to 0.08% anionic agent & polymer mixtures</td>
<td>40% reduction on 1(^{st}) LW study Inconclusive on 2(^{nd}) LW study</td>
</tr>
</tbody>
</table>
Do Currently Used Wetting Agents Work?

- Pulverized Keystone Mineral Black 325BA or -325 mesh (-44um)
Pocahontas No. 3 coal dust (Difficult to Wet)

- Three Wetting Agents Used by Mining Companies
 A. Homogenous blend of colloids, sequestrants, and nonionic surfactants
 B. Anionic surfactants and polymers
 C. Anionic surfactant

- Dust Sink Tests at 0.05%, 0.10%, and 0.20%

- Airborne spray dust capture testing with BD3 hollow cone nozzle at 80 psig and 160 psig

- Measured Surface Tension, PH, Conductivity, TDS or Salinity
Coal Dust Sink Tests
at 0.05%, 0.10% and 0.20% concentrations
Sink Test Wetting Results

average of 3 tests

<table>
<thead>
<tr>
<th>Wetting Agent</th>
<th>Water Sample</th>
<th>0.05% Solution</th>
<th>0.10% Solution</th>
<th>0.20% Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>> 900 sec.</td>
<td>863 sec.</td>
<td>373 sec.</td>
<td>193 sec.</td>
</tr>
<tr>
<td>B</td>
<td>> 900 sec.</td>
<td>> 900 sec.</td>
<td>> 900 sec.</td>
<td>1238 sec.</td>
</tr>
<tr>
<td>C</td>
<td>> 900 sec.</td>
<td>> 900 sec.</td>
<td>> 900 sec.</td>
<td>1301 sec.</td>
</tr>
</tbody>
</table>
Airborne Dust Capture Tests
at 0.20% Solution

✓ Suppression effects most likely coal seam site specific
Wethead Spray Technology

Locates water sprays directly behind each bit on the cutter head at point of attack

- 62 to 73 sprays on head
- 25-30 gpm at 100psi
- Solid or hollow cone sprays

Courtesy of Joy Mining Machinery
Wethead Benefits

- Bit cooling - reduce frictional ignitions
- Increase bit life
- No increase in water consumption
- Potential to reduce respirable dust
Wethead vs Standard Sprays

<table>
<thead>
<tr>
<th></th>
<th>Mine A</th>
<th>Mine B</th>
<th>Mine C</th>
<th>Mine D</th>
<th>Mine E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation</td>
<td>Blowing</td>
<td>Exhausting</td>
<td>Blowing</td>
<td>Blowing</td>
<td>Exhausting</td>
</tr>
<tr>
<td>Scrubber</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Boom Sprays Plugged Between Comparisons
All Mines - CM Operator

Continuous Miner Operator Dust Levels

Concentration, mg/m³

Mine

Exhaust
Blowing
Blowing
Exhaust

A
B
C
D
E

No Scrubber

Stnd
WH
All Mines - Return

Return Dust Levels

Concentration, mg/m³

<table>
<thead>
<tr>
<th>Mine</th>
<th>Blowing</th>
<th>Exhaust</th>
<th>No Scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stnd
WH

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Conclusions & Observations

• Dust reduction in return with exhausting ventilation without scrubber
• Moderate to small reductions at the CM operator
• Quartz dust reduction variable
• Increased visibility
• Operator acceptance

Would an increase in water flow rate at lower spray pressures notably increase dust control?
Flooded-bed Scrubbers
Capture and Remove Airborne Dust
10 vs 30 Layer Filters
Respirable Dust Collection Efficiencies

Collection efficiency (%)

Filter type
20-L, 15-L, Brush, 10-L, Synthetic, 30-L
Air Quantity Measured With Each Filter Panel

<table>
<thead>
<tr>
<th>Filter type</th>
<th>Airflow (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-L</td>
<td>8000</td>
</tr>
<tr>
<td>15-L</td>
<td>8000</td>
</tr>
<tr>
<td>Brush</td>
<td>8000</td>
</tr>
<tr>
<td>10-L</td>
<td>9000</td>
</tr>
<tr>
<td>Synthetic</td>
<td>6500</td>
</tr>
<tr>
<td>30-L</td>
<td>6500</td>
</tr>
</tbody>
</table>
Scrubber Efficiency

- Scrubbers can lose 1/3 of airflow after one cut
- Check air velocity with pitot tube
- Most common loss of efficiency due to filter panel clogging
Clean and Maintain Scrubber Filter and Demister

- Filter spray(s) should completely wet the panel (full cone sprays)
- Clean filter panel each cut and ductwork twice per shift
- Replace filter each shift, back flush and allow to dry, then shake out remaining dust
Clean the Demister and Sump Weekly at a Minimum
Face Airflow Practices
Blowing Ventilation

Correct location

Remote operator (intake)

Intake air

Remote operator (return)

Scrubber exhaust
Blowing Ventilation

• Advantages
 • Greater penetration to face > 800 fpm
 • Effectively sweeps dust and methane from the face
 • Easier to maintain than exhaust

• Disadvantages
 • Restricts operator movement
 • Shuttle car operators must work in return air
 • Incorrect air balance may cause recirculation or overpowering
Blowing Ventilation

Recommendations

- Airflow at end of curtain should match or be no more than 1000 cfm > scrubber airflow
- Measure airflow into place with scrubber off
- Shuttle car operator on curtain side of entry
- Scrubber discharge on off curtain side
Face Airflow Practices
Exhausting Ventilation

Off-Curtain side
miner position

Curtain side
miner position

Scrubber exhaust

Remote operator
location

Intake air

Intake air
Exhausting Ventilation

Advantages
- Operator has greater range of movement
- Shuttle car operator remains in fresh air
- Minimal effects on scrubber inlet capture effectiveness

Disadvantages
- Curtain is difficult to maintain
- Less effective sweep of dust and methane from the face than blowing
Exhausting Ventilation
Recommendations

- Operator/helpers remain on intake side of entry
- Line curtain secured firmly to roof and floor
- Mean entry air velocity – 60 fpm minimum
- Curtain setback beyond scrubber discharge
- Shuttle car operator on off curtain side of entry
- Exhaust curtain airflow should exceed scrubber airflow.
Spray and Scrubber Optimization For Exhaust Face Ventilation Systems

Continuous Miner Gallery Laboratory Experiments

Test Factors:
- Spray Pressure (80psi – 160 psi)
- Blocking Sprays (Off – On)
- Scrubber Flow (Max. – Reduced 20%)
Slab Cut Dust Results – Off Curtain Side

Dust Conc., mg/m³

Spray Pressure-Scrubber Airflow

Hollow-RRC Flat-RRC Hollow-Oper Flat-Oper

No Blocking Sprays Blocking Sprays
Slab Cut Dust Results – Curtain Side

Spray Pressure-Scrubber Airflow

No Blocking Sprays

Blocking Sprays

Dust Conc., mg/m³

Spray Pressure-Scrubber Airflow

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Slab Cut SF_6 Gas Results

- Hollow-OCS
- Flat-OCS
- Hollow-CS
- Flat-CS

<table>
<thead>
<tr>
<th>Spray Pressure-Scrubber Airflow</th>
<th>160psi-Low</th>
<th>80psi-Low</th>
<th>160psi-Max</th>
<th>80psi-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking Sprays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Blocking Sprays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SF_6 Gas Conc., ppm
Spray system optimization
Results – Optimal Dust & Gas Results

- Operator Position – Off curtain location
- Spray Type – Hollow Cone
- Spray Pressure – 80 psi
- Blocking Sprays – Yes
- Scrubber airflow – Maximum
Underground Studies of Continuous Miner Scrubber Effectiveness

• MSHA approves use of deep cuts (roof, methane, dust control)
 – Mines must demonstrate effective control in standard cuts before MSHA considers approval of deep cut
 – Flooded-bed scrubber is a key component in deep cut dust control

• Industry – Are deep cuts dustier than standard cuts?
 – Blowing and exhausting ventilation systems evaluated

• MSHA – How do dust levels compare in 20-foot cuts with and without a scrubber operating?
 – NIOSH conducted evaluation of scrubber use in 20-foot cuts with exhaust ventilation and an extended curtain setback
Face Dust Levels at Deep-Cut CM Sections

• 6 underground dust surveys: KY, WV, IL, VA, UT
 3 – Blowing face ventilation
 2 – Exhausting face ventilation
 1 - Blowing/Exhausting face ventilation

✓ No blocking sprays used at any of these operations
Plan view of area dust sampling
Shuttle car sampling

Consistent position with respect to CM
Present during cutting and loading activities
Continuous miner

- Scrubber airflow
 - Beginning of cut
 - 20 ft into cut
 - 40 ft into cut
- Curtain airflow
- Curtain setback
Percentage of Cuts with Scrubber Airflow Reduction

- 65%: 0 to 9%
- 22%: 10 to 19%
- 13%: 20 to 35%
Exhaust curtain - shuttle car results

- Average regular cut dust level at face = 0.20 mg/m³
- Average deep cut dust level at face = 0.35 mg/m³
- Not statistically significant
- 10 of 14 cuts experienced no significant change in dust levels during cut
- 4 experienced 0.2 to 0.4 mg/m³ higher dust during the deep cut due to use of on-curtain side cab*
- Mines with larger scrubbers had lower dust*

* Also confirmed by laboratory studies
Blowing curtain - shuttle car results

- Average regular cut dust level at face = 1.96 mg/m3
- Average deep cut dust level at face = 2.32 mg/m3
- Not Statistically Significant
- 13 of 18 cuts experienced no significant change in dust levels during cut
- 1 experienced higher dust during the deep cut possibly due to improper curtain to scrubber airflow ratio (curtain airflow almost twice scrubber airflow)
- 1 experienced higher dust during deep cut due to change in shuttle car route
- 2 experienced higher dust for unknown reasons
- 1 experienced lower dust due to operator positioning
Other Dust Results

Statistically Significant (85% CI) Changes in Dust Levels at Other Positions from Regular to Deep Cut Depth

<table>
<thead>
<tr>
<th></th>
<th>Mine A</th>
<th>Mine B</th>
<th>Mine C</th>
<th>Mine D</th>
<th>Mine E</th>
<th>Mine F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miner Operator</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>-</td>
<td>None</td>
</tr>
<tr>
<td>Miner Generated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Lower</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bolter Operator</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bolter Generated</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

All daily average dust concentrations measured at the bolter and miner operator positions were less than 2.0 mg/m³
Conclusions and Observations

- Use of extended-cut practices did not hinder dust control efforts on the bolter and miner faces at the surveyed mines
- All mines had good curtain and scrubber airflows
- 30 to 50 ft curtain setback distances
- Operator located at mouth of curtain on blowing faces and parallel to or outby curtain mouth on exhausting faces
- For exhaust faces, use off-curtain side shuttle car cabs
- For blowing faces, curtain-to-scrubber airflow ratio of 1.0 before activation of scrubber
- 20-mesh scrubber screens require back-flushing each cut
- Industry could further benefit from use of blocking sprays
- Ventilate and advance curtain on bolting faces
Continuous Mining Dust Levels With and Without a Scrubber
Sampling summary

<table>
<thead>
<tr>
<th>Mine</th>
<th>Continuous miner cuts</th>
<th>Roof bolter cuts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scrubber off</td>
<td>Scrubber on</td>
<td>Total</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Dust level results for 20-foot cuts with & without scrubber

Respirable dust concentration, mg/m³

Mine A
- SC - off: 91%
- SC - on: 86%
- Oper - off: 86%
- Oper - on: 40%
- Ret - off: 82%
- Ret - on: 14%

Mine B
- SC - off: 86%
- SC - on: 82%
- Oper - off: 82%
- Oper - on: 14%
- Ret - off: 82%
- Ret - on: 14%

Mine C
- SC - off: 86%
- SC - on: 82%
- Oper - off: 82%
- Oper - on: 14%
- Ret - off: 82%
- Ret - on: 14%

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Conclusions

• Continuous miner and shuttle car operators’ dust concentrations
 – respirable dust exposures $\leq 0.55 \text{ mg/m}^3$ for both test conditions
 – no statistically significant differences with/without scrubber

• Miner return dust concentrations
 – 91%, 86% & 40% reductions at Mines A, B & C with scrubber on
 – statistically significant differences at Mines A and B

• Roof bolter intake dust concentrations downwind of the miner
 – 85% and 34% reductions at Mines B and C with the scrubber on
 – no statistical analysis completed
Conclusions (continued)

- Quartz dust concentrations in the miner return
 - 86%, 82%, & 14% reductions at Mines A, B, & C with scrubber on
 - *statistically significant differences at Mines A and B*

- Scrubber air quantities
 - 2,000 cfm (29%) and 1,500 cfm (35%) reductions at Mines B and C after completing one cut
 - *scrubber filters should be cleaned after each cut to ensure proper airflow*
Crosscut Dust Study

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of mines</td>
<td>10</td>
</tr>
<tr>
<td>Mining height (inches), mean ± SD</td>
<td>64.1 ± 16.7</td>
</tr>
<tr>
<td>Ventilation rate (cfm), mean ± SD</td>
<td>8338 ± 2870</td>
</tr>
<tr>
<td>No. of cuts sampled</td>
<td>167</td>
</tr>
<tr>
<td>No. of headings sampled</td>
<td>109</td>
</tr>
<tr>
<td>No. of crosscuts sampled</td>
<td>61</td>
</tr>
</tbody>
</table>

- Mines selected from prior OMSHR field studies from 2007 to present
- Fully mechanized, ventilated by curtain, used on-board flooded bed scrubbers
CM Dust Levels

- No significant difference in dust levels between headings and crosscuts
- **Blowing** ventilation lower than exhausting face vent
- Turning **crosscuts into ventilation** found to be higher
SC Dust Levels

- **Crosscuts** found to be lower than headings
- **Blowing** face ventilation found to be higher than exhausting
- Turning **crosscuts into ventilation** found to be higher
CM Oper. Dust Levels for X-cut Breakthrough into Ventilation

Dust Concentrations, mg/m³

Time, hr:min:sec

Breakthrough

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
CM Oper. Dust Levels for X-cut Breakthrough with Ventilation
Crosscut Mining
Recommendations

• Mine crosscuts with the direction of section ventilation

• When mining crosscuts against the direction of section ventilation
 – minimize the breakthrough time by squaring up the face a few feet before breakthrough
 – block/seal the projected breakthrough rib area with ventilation curtain to restrict the opposing airflow pattern during breakthrough
Other Considerations

• Bit Design
• Cutting Roof Rock
Bit Designs

- Slender profile
- Small carbide
- High wear rate, resulting in high dust levels

- Intermediate profile
- Large carbide
- Low wear rate
- Low dust levels

- Fat profile
- Irregular transition
- Shank rubs, resulting in high dust levels
Improved Cutting Methods
Roof Bolter Dust Control
Roof Bolter Dust Collector

COLLECTION SIDE
- Drill Bit
- Drill Steel
- Drill Base
- Collector Hose
- Pre-Cleaner
- Canister Filter

DISCHARGE SIDE
- Vacuum Pump
- Muffler

Dust Collector Box

Main Chamber

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Operator Over Exposures

- Poor maintenance of vacuum dust collector
- Improper cleaning of collector compartment
- Removing and replacing canister filter
- Contamination of the downstream collector components
Maintenance

• Eliminate leaks in vacuum system
• Check door gasket integrity
• Hoses and clamps
• Door latches intact
• Door not bent, seating tight
Improper Cleaning of Dust Box

• Insufficient air
• Downwind of ventilation
• Too close to source
• Clothes contamination
Filter Removal and Replacement

Cleaning the Filter?
Discharge Contamination
Disposable Collector Bag

- Distributed by JH Fletcher for bolters
- Can be retrofitted to most Fletcher dust collectors
- Recommended to be used with pre-cleaner
Collector Box Tests

Without Bag

With Bag
Pressure Drop Across Filter

Key
- **Bag**
- **Bagless**

Axes:
- **Y-axis:** PRESSURE, in wg
- **X-axis:** TEST NUMBER

Graph shows the comparison of pressure drop for Bag and Bagless conditions across different test numbers.

OFFICE OF MINE SAFETY AND HEALTH RESEARCH
Lab Results Summary

- 99.6% of feed dust contained in collector bag
- Dust concentration in exhaust: 2 times higher without bag
- Particle count of fine dust (< 2 microns) 3 times greater without bag
- Canister filter loading greatly reduced with bag in place
Bolter Bag Field Study

- Dual boom Fletcher bolter
- Upwind of miner
- Exhausting ventilation
- Bag vs bagless
Collector box cleaning time reduced from 4 minutes to 30 seconds
Collector Bag Benefits

- Keeps dust contained during removal from box
- Keeps dust out of entry traffic preventing further entrainment
- Prolongs filter usage – reduces replacement frequency
- Reduces dust on outby collector components
- Reduces dust emissions from collector exhaust
Pre-cleaner Dust Evaluation

- Roof bolter dust collector samples collected by NIOSH & MSHA from UG coal mines in Districts 4, 5, 6, and 7.
- Bulk dust samples analyzed for quartz content and particle size distribution.
- Airborne respirable dust samples collected by NIOSH to identify any respirable dust contribution from pre-cleaner dust dump events.
Bulk Sample Results - Size

- Collector box dust significantly smaller than pre-cleaner discharge dust.
Bulk Dust Results - Quartz

- Quartz content (weight %) not significantly different between pre-cleaner discharge dust and collector box dust.
pDR Data Analysis

- Pre-cleaner dust dump events did not result in measurable increases of airborne respirable dust.
Conclusion

• No detectable contribution to airborne respirable dust from roof bolter pre-cleaner discharge events was observed in limited field sampling.

• Pre-cleaner dump dust is a potential hazard due to the amount of respirable size and quartz content. Miners should be trained to avoid disturbing dust piles.
Water Exhaust Conditioner
Laboratory Tests

- Add water box to existing dust collector simulator in lab
- Test two dust types: limestone and coal
- Sample upstream and downstream of device
Exhaust conditioner

Results

• Exhaust conditioner improves respirable dust collection efficiency by 41%
• Minimal potential for benefits/impact on operator exposure when dust collector box is properly maintained
• Not a substitute for poorly maintained collector box
Canopy Air Curtain

Limits exposures downwind of continuous miner
Canopy Air Curtain Testing

- Lab testing of various designs to provide maximum protection for bolter operators
- Field test the best design to determine dust reduction during normal bolting operations
Canopy Air Curtain
Results

• Lab study show 95% reduction under canopy at 60 fpm mean entry air velocity.
 – Sampling 100% of time under CAC
• Field study of 3 bolter places shows reductions of 53, 35, and 89%
 – CAC operator under canopy only about 50% of the sampling time
Stand Alone Scrubber
Clean a Split of Air for the Roof Bolter
Fletcher Dry Scrubber (DS)

- 4 feet wide x 4 feet high x 15.7 feet long
- 30 hp. vane axial electric fan (480 V) with variable frequency drive (VFD) speed controller
- Scrubber airflow quantity selected via remote transceiver
- Dual 28 inch O.D. cylindrical disposable air filters rated at 99% efficiency for 2 µm particles
- Crawler tram hydraulically controlled via remote transceiver
DS Laboratory Test Results

![Graph showing dust removal efficiency and collector airflow over operating time.](image-url)
DS Filter Life Projections
Controlling Worker Exposure

- Minimize Quantity of Dust Generated
- Apply Controls Close to Source
- Utilize a Multitude of Controls
- Worker Involvement

✓ Maintenance is Critical
Questions?

John Organiscak, 412-386-6675 or jorganiscak@cdc.gov

Timothy Beck, 412–386–4776 or tbeck@cdc.gov

Jay Colinet, 412-386-6825 or jcolinet@cdc.gov

J. Drew Potts, 412-386-4487 or jpotts1@cdc.gov

The findings and conclusions in this presentation have not been formally disseminated by NIOSH and should not be construed to represent any agency determination or policy.