Sound Practices to Control Respirable Dust on Longwall Operations and Ongoing Research at NIOSH Pittsburgh

Jim Rider
Acting Team Lead, Dust Control
Lead Research Scientist
Dust, Ventilation and Toxic Substances Branch
National Institute for Occupational Safety and Health

MSHA Coal Mine Respirable Dust Control Summit, National Health & Safety Academy, Beaver, WV
December 6, 2016
Presentation Outline

- PMRD / DCVTSB - Mission
- Respirable Dust / Silicosis
- Dust Control Methodology
- Longwall Dust Control / Ongoing Research
  - Shearer Dust Control
  - Shield Dust
  - Stageloader Dust Control
  - Outby Sources
  - Traveling Water Curtain (Shield Sprays)
  - Foam for Shield Dust Control
  - University of Kentucky Shearer Scrubber
Dust Control, Ventilation and Toxic Substances Branch

• Mission....eliminate the adverse health effects to mine workers resulting from exposure to dust, diesel emissions and other toxic workplace contaminants.

• 27 employees

• Four main areas of research:
  - dust control technology
  - diesel research
  - ventilation
  - instrumentation development
Dust Control Research Program

Work in cooperation with MSHA and industry to:

- Investigate dust sources through baseline studies and evaluate control technologies currently in use
- Modify or develop new control technologies that will benefit all stakeholders
- Transfer this technology to industry through seminars, conferences, journals, videos, NIOSH web page
Respirable Dust

- Diameter Less than 10 Micrometers (Micron)
- **What’s a Micron?**
  - Pretty Darn Small
  - 1/24,000th of an inch!
- Human Hair
  - 40-150 microns in diameter

- The particle size that deposits in lung tissue is not visible to the naked eye.
The Human Respiratory System

- Gas Exchange
- Supply Oxygen
- Remove Carbon Dioxide
- Nose or Mouth
- Windpipe
- Mucous & Cilia
- Alveolar Region
Fate of the Deposited Dust

• **Macrophage Cells**
  - Act like little PACMEN
  - Engulf dust particles

• **Some can Move**
  - Out of the alveoli
  - Into the Lymphatic System

• **Some Don’t**
Pneumoconiosis

The accumulation of dust in the lungs and the tissues reactions to its presence.

- Fibrotic diseases – damage/destroy lung tissue
  - coal workers’ pneumoconiosis “CWP”
  - silicosis

- Airflow diseases “COPD” – block movement of air in and out of lungs
  - bronchitis
  - emphysema
  - mineral dust airway disease
Quantifying Longwall Dust Levels

Notable Observations From Most Recent Benchmarking Surveys
(concentrations based on 2.0 mg/m³ standard)

- **Shield 10 Dust Levels - 0.70 mg/m³**
  Good indication of dust entering face from outby sources

- **Average Dust Levels (mg/m³)**
<table>
<thead>
<tr>
<th></th>
<th>Upwind</th>
<th>Shearer</th>
<th>Downwind</th>
</tr>
</thead>
<tbody>
<tr>
<td>H→T</td>
<td>1.91</td>
<td>2.23</td>
<td>3.71</td>
</tr>
<tr>
<td>T→H</td>
<td>1.13</td>
<td>1.64</td>
<td></td>
</tr>
</tbody>
</table>

- **H→T Shield Advances**
  H→T Upwind dust levels increased 1.05 mg/m³ when compared to T→H Upwind dust levels
Dust Control Philosophy

- Minimize the quantity of respirable dust generated
  - efficient cutting (drum design, bit design, bit sharpness)

- Prevent the respirable dust from getting airborne
  - wet dust at generation point (nozzle type, location, operating parameters)
  - enclose dust source

- Remove respirable dust from ventilating air
  - flooded-bed scrubbers (capacity, inlet location, filters)
  - dry dust collectors (collector bags, monitoring)
  - water sprays (nozzle type, location, operating parameters)

- Dilute remaining airborne dust
  - ventilation quantity

- Prevent respirable dust from reaching workers’ breathing zone
  - ventilation velocity
  - water sprays to move air (blocking sprays, directional sprays)
  - physical barriers
Dust Control Philosophy

Droplet Size:

• To keep dust from becoming airborne: Water droplet sizes above 100 microns should be used.

• To knock down existing dust in air: Water droplets should be in a similar size range to the dust particles.
Water Droplet Size Should Match the Size of the Dust Particle
Dust Control Principles

Ventilation Air

- Dilution (quantity)
- Transport or Move (velocity)

Impact of Water on Dust

- Suppression – prevent generation
- Capture – remove from air (water or mechanical means)
- Redirection – directed away from worker

Water Sprays

- Suppress (high flow; low pressure)
- Capture (type of spray; velocity)
- Redirect (high pressure; spray location)
Controlling Shearer Dust

Face Ventilation – **Principal method** of controlling respirable dust on longwall faces

Recent Surveys:

- 80% > 600 ft/min
- 30% > 800 ft/min, as high as 1300 ft/min

Previous studies:

- 700 – 900 ft/min velocity shown to be effective when moisture content of dust is 5 to 8%
Controlling Shearer Dust

Drum Mounted Water Sprays

- Dust suppression directly at the point of coal fracture
- Adds moisture to minimize dust liberation
- Full cone or solid stream spray pattern
- Larger orifices increase water quantity while decreasing pressure
- Observed spray pressure ranged between 100 – 160 psi
- Number of sprays per drum ranged between 35 - 62
Controlling Shearer Dust

Minimize Dust Generation

- Replacing damaged, worn or missing bits can not be over emphasized
- Dull bits result in shallow cutting and greatly increases dust generation

Maintenance is Critical
Controlling Shearer Dust

Crescent Sprays

- Located on the top and end of ranging arms
- Sprays oriented toward face
- Observed on 50% of recently survey longwalls
- Flat fan sprays
Controlling Shearer Dust

Crescent Sprays

- Use caution if sprays are utilized on the headgate ranging arm
- Sprays on the end of ranging arm are oriented into the face airflow
- Can create turbulence that force dust toward the walkway
Controlling Shearer Dust

**Directional spray system (shearer clearer spray system)**

- **Headgate Splitter Arm**
  - Headgate arm designed to split the face airflow at the shearer
  - Splitter arm sprays induce airflow movement toward face
  - Belting on splitter arm provides physical barrier to confine dust

- Shearer mounted sprays oriented downwind

- Tailgate splitter arm or spray manifold
Controlling Shearer Dust

Headgate Splitter Arm

- Extend as far beyond the headgate drum as possible
- Sufficient number of sprays to prevent dust from migrating into walkway
- Hollow cone or venturi sprays
- Water pressure of at least 150 psi
- Maintain proper arm position
Controlling Shearer Dust

Splitter Arms

- Unique to each mine operation
- Length – 5 to 14 ft.
- 3 – 20 sprays
- 2 splitter arms utilized venturi sprays
- Spray orientation
  - Perpendicular
  - 30 - 45 degrees toward panline
  - 30 – 45 degrees up
Controlling Shearer Dust

Splitter Arms

➢ Splitter arm extensions oriented at a 30 - 45 degrees toward face
  • Length – 2 to 4 ft.
  • 3 – 5 sprays

Splitter Arm Belting

➢ Belting should be suspended the length of the splitter arm
➢ Provides a physical barrier
Controlling Shearer Dust

Splitter Arm Belting

- Tears and gaps in the conveyor belting greatly compromise the effectiveness of the splitter arm
Controlling Shearer Dust

Shearer-body Sprays

- Sprays confine dust near face and assist in moving along shearer body
- 3 or 4 manifolds evenly spaced
- along the length of the shearer
- 3 to 5 sprays per manifold
- Manifolds located on top deck of shearer or on face side of shearer body
Controlling Shearer Dust

Deflector Plates

- Observed at western mines
- Primary function is to protect operators from flying debris
- Provides a physical barrier that can enhance the effectiveness of the directional spray system
- Equipped with water sprays
  - Evenly spaced the length of the deflector plate
Controlling Shearer Dust

Deflector Plates

- If sprays operational, spray plume is directed upward, strikes the underside of the shields creating turbulence
- Potentially allowing dust to migrate into the walkway
- Operators have to be diligent in turning off the sprays when in the down position
Controlling Shearer Dust

Tailgate Side Sprays

- Spray manifold mounted on tailgate end of shearer
- Oriented parallel to ranging arm and angled slightly toward drum
- Confines dust-laden air to face and carries it beyond the tailgate drum
Controlling Shield Dust

- Automated and usually are initiated within 3-5 shields of trailing drum
- Can be a significant source of dust exposure when shields are advanced upwind of shearer
- Concerted effort to rotate jacksetter operators outby
Controlling Shield Dust

- Traditional canopy-mounted sprays
  - Discharge water on top of shields
  - Hard to maintain sprays
  - Effectiveness not quantified

- Dilution
  - Higher face air quantities can increase dilution of shield dust
  - Advance shields as far upwind as possible on head-to-tail passes to allow dilution

- Depending on roof conditions consider using uni-directional cutting sequence
Underside Canopy Sprays

- Automatically activated by shearer to create a moving water curtain
- 1 or 2 rows of sprays per shield
- Located between the tip of the shield to an area above the spill plate
- Spray activation and de-activation sequencing was mine specific
- Proper sequencing is critical
- Observed shield sprays interacting with splitter arm sprays creating turbulence
- Dust and mist cloud rolled into walkway
Stageloader/Crusher Dust Control

- Stageloader/crusher are fully enclosed
- No universally applied technique
- Combination of steel plates
- Conveyor belting at entrance and discharge area
- Imperative that seals and skirts be maintained
- Scrubbers
Stageloader/Crusher Dust Control

Crusher and Belt Transfer Sprays

- Typical spray locations
  - Entrance
  - Above crusher hammer
  - Discharge area
  - Belt transfer area
- Spray bar spans the width
- 3-4 full cone sprays
- Water quantity over pressure
- Water pressure <= 60 psi
- Foam?
Stageloader/Crusher Dust Control

**Scrubbers**

- Crusher discharge
- Belt transfer area
- Capacity – 6500 – 8500 ft³/min
- Potential to create negative pressure in the stageloader/crusher to minimize dust from leaking out
Dust Control in the Headgate Entry

- Installation and **maintenance** of a gob curtain
Dust Control in the Headgate Entry

Position face personnel outby as headgate drum cuts out into headgate entry

- Drum is exposed to the primary airstream
- Dust levels as high as 20.0 – 30.0 mg/m³ for a short duration
- Position face personnel near shields 1 and 2 and further outby
- Concerted effort to move outby cutout area
Dust Control in the Headgate Entry

Deflection barriers in headgate area

- Belting attached to underside of shields 1-4
- Belting attached to top of conveyor drive
- Aids in turning air down the face
- Protects face personnel from flying rock
Controlling Dust on Intake Roadways

Limit support activities during production shifts

- Vehicle movement
- Removal of stoppings
- Delivering / unloading of supplies
Controlling Dust on Intake Roadways

- **Water Application**
  - Maintain moisture content at approximately 10%
  - Operators must diligent in monitoring moisture content

- **Salts**
  - Apply calcium and magnesium chloride to increase surface moisture

- **Utilize Surfactants**
  - Beneficial in maintaining proper moisture content
  - Decrease surface tension
  - More uniform wetting of the dust particles
Controlling Dust from the Belt Entry

With the substantial increase in airflow, rewetting of the coal may be necessary along the belt.

- Flat or full cone sprays
- Quantity over Pressure
- Pressure - 50 - 60 psi
Laboratory Assessment
Tailgate-side Shearer Spray Manifold

- Face Velocity - 500, 700, 900 fpm
- Spray Pressure - 100, 150, 200 psi
- Spray Manifold – 4” x 36”
  - SS BD3 Hollow Cone – 7 sprays
  - 42” from TG drum – 25 degree angle toward the face
- Spray Manifold – 4” x 36”
  - SS 40-20 Flat fan Spray – 2 sprays
  - 47” from TG drum – 15 degree angle toward the face
- Spray Manifold - 2 manifolds – 4” x 36”
  - SS 65-15 Flat fan Spray – 2 sprays
  - 32” and 37” from TG drum – parallel to face
Laboratory Assessment
Tailgate-side Shearer Spray Manifold

- All spray nozzles substantially reduced dust under all test conditions.

- Reductions in dust concentrations ranged between 60% and 95%.

- Flat fan sprays compared to the hollow cones sprays were more effective at reducing dust concentrations.

- No apparent relation between air velocity and reduced dust concentration for any of the nozzle types.
Tailgate-side Shearer Spray Manifold
Gravimetric Dust Concentrations

2 Manifolds and 4 SS 65-15 Flat Fan Sprays

Velocity 500 fpm

Sprays Off (mg/m3)

Sprays On (mg/m3)

Velocity 900 fpm

Sprays Off (mg/m3)

Sprays On (mg/m3)
Tailgate-side Shearer Spray Manifold
Instantaneous (pDR) Dust Concentrations

2 SS 40-20 Flat Fan Sprays

Velocity 500 fpm

Velocity 900 fpm
Tailgate-side Shearer Spray Manifold
Underground Evaluation
Tailgate-side Shearer Spray Manifold
Underground Evaluation

- Face velocity (approximately 1300 fpm) was the dominating dust control factor resulting in very low dust levels at the sampling locations.

- Dust levels observed with gravimetric samplers: 0.856 mg/m³ (SHEARER); 0.941 mg/m³ (DOWNWIND).

- Lower dust levels were observed with the tailgate spray manifold operational.
  - T->H: .067 mg/m³ OFF vs .059 mg/m³ ON
  - H->T: .142 mg/m³ OFF vs .051 mg/m³ ON

- The tailgate spray manifold appeared to have a positive influence on keeping dust the cloud confined close to face levels in the tailgate area.

- Both tailgate operators liked the spray manifold and thought it helped keep dust out of the walkway in the tailgate area.

- Further underground evaluations are warranted for faces that have air velocities below 1,000 fpm.
Traveling Water Curtain / Shield Sprays
(Outby Spalling)
On-going Research

- Observed shield sprays interacting with splitter arm sprays creating turbulence
- Dust and mist cloud rolled into walkway
- Spalling upwind of headgate drum and dust rolling around splitter arm
  - Proper Sequencing
Traveling Water Curtain/Shield Sprays -
(Outby Spalling)

Experimental Parameters

- Face velocity – 700 fpm
- Spray types – Hollow Cone, Flat Fan (SS65-15)
- Splitter arm spray pressure – 150 psi
- Activated shield sprays – 2
- Spray angles – 60 degrees
- Underside spray pressure – 100, 150, and 200 psi
- Distance from face – 4’, 4.5’, 5’, and 5.5’
- Distance from floor to shields – 112” and 90”
Traveling Water Curtain/Shield Sprays -
(Outby Spalling)
Laboratory testing
Traveling Water Curtain/Shield Sprays - (Outby Spalling)

Laboratory testing

<table>
<thead>
<tr>
<th></th>
<th>PMRD</th>
<th>Bailey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face to Spill Plate</td>
<td>74&quot;</td>
<td>72.5&quot;</td>
</tr>
<tr>
<td>Floor to Underside of Shield Bottom</td>
<td>112&quot; / 90&quot;</td>
<td>77&quot;</td>
</tr>
<tr>
<td>Spill Plate Height</td>
<td>44&quot;</td>
<td>42&quot;</td>
</tr>
<tr>
<td>Spill Plate to Underside of Shield Bottom</td>
<td>60&quot; / 38&quot;</td>
<td>27&quot;</td>
</tr>
</tbody>
</table>
Traveling Water Curtain/Shield Sprays - (Outby Spalling)
Laboratory testing
Foam for Longwall Shield Dust Control
Laboratory Testing

- Compressed air generated
  - Uses Lafferty foam generator
  - Foam expansion ratios 3 to 19
  - Drainage (44-478 ml)

- Blower air generated
  - Uses NIOSH designed foam generator
  - Foam expansion ratios 19 to 65
  - Drainage (0-15 ml)
Foam for Longwall Shield Dust Control

Video of blower generated foam roof application test
Foam for Longwall Shield Dust Control
(Dust Suppression Experiments)

- Complete fabricating test apparatus
- Develop protocol
- Conduct experiments
Foam for Longwall Shield Dust Control
(Dust Suppression Experiments)

Video of shield dust liberation being simulated in test stand
Foam for Longwall Shield Dust Control
(Dust Suppression Experiments)

Video of foam impact on shield dust liberation in test stand
Foam for Longwall Shield Dust Control
(Dust Suppression Experiments)
Testing of UK Shearer Scrubber
Summary

Effective Directional Spray Systems
Ineffective Directional Spray Systems
Summary

Maximum the Benefits of Available Controls
Commitment to Dust Controls

- Worker and management involvement
  - Knowledge and attitude
  - Safety => immediate / Health => long term

Maintenance is critical
“And always remember: What’s on your face you can wash-off, but what’s on your lungs you can’t. So be safe, and take care of yourself.”

Carl Bailey
58 years old.
Worked 28 years in WV mines, with most of his work at the face.

“I was always trained to avoid injuries and I should’ve paid more attention to the dust.”

Chester Fike
55 years old.
Worked 34 years in mines in WV and MD and operated a continuous miner for 27 years.
Questions?

Jim Rider

412-386-4727

jrider@cdc.gov